Explicit Covariance Matrix for Particle Measurement Precision
نویسنده
چکیده
We derive explicit and precise formulae for 3 by 3 error matrix of particle transverse momentum, direction and impact parameter. The error matrix elements are expressed as functions of up to fourth order statistical moments of the measured coordinates. The formulae are valid for any curvature and track length in case of negligible multiple scattering. The calculation is compared with formulae derived by Gluckstern for curvature and direction. We show that Gluckstern formulation is valid at the limit of small L=R, ratio between the track length and radius of curvature.
منابع مشابه
An SLAM Algorithm Based on Square-root Cubature Particle Filter
The lack of the latest measurement information and the Particle serious degradation cause low estimation precision in the tradition particle filter SLAM (simultaneous localization and mapping). For solve this problem, a SRCPF-SLAM (square cubature particle filter simultaneous localization and mapping) is proposed in this paper. The algorithm fuses the latest measurement information in the stage...
متن کاملBernstein-von Mises Theorems for Functionals of Covariance
We provide a general theoretical framework to derive Bernstein-von Mises theorems for matrix functionals. The conditions on functionals and priors are explicit and easy to check. Results are obtained for various functionals including entries of covariance matrix, entries of precision matrix, quadratic forms, log-determinant, eigenvalues in the Bayesian Gaussian covariance/precision matrix estim...
متن کاملCOVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS
Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...
متن کاملSparsistency and Rates of Convergence in Large Covariance Matrix Estimation1 by Clifford Lam
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the cova...
متن کاملSparsistency and Rates of Convergence in Large Covariance Matrix Estimation.
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the cova...
متن کامل